
Game AI Agent Design
CS181 Artificial Intelligence Project Report

Team Member：秦朝 张涵锐 刘峻上

Da Vinci Code

Background01.

Formulation02.

Solution03.

Outcomes04.

CONTENTS

Problem Background
Section 1

Background

Da Vinci Code game is basically a number-guessing game.
Players can see their own cards, meanwhile must utilize hidden
information to inference the number of opponent’s card.

Guess-Number Game

In this game, players act in turns, making guesses and adjusting
their strategies based on feedback from correct or incorrect
predictions, so as to maximize its own profit.

Turn-Based Game

01

02

Game Rules

Gameflow
Each player draws four hidden cards and arranges them in the order from small to big.
On their turn, a player draws a new card of either white or black, then guesses an
opponent’s hidden card number. If correct, they can guess again or insert the new card
into their hand; if wrong, they reveal the card and insert it.

Winning Condition
When the deck runs out, players no longer draw new cards. The goal is to reveal all
opponents’ hidden cards while keeping your own hidden. A player wins by revealing all
other opponents’ cards before being revealed his own cards.

Problem Formulation

Section 2

Game state

dddaa
Own Hand Cards hc[]

Ordered list of own cards
(number, color, revealed

status).

hc[0] = [7, 'black', False] means black 7 in
my hand, not revealed, and leftmost.

Opponent Cards oc[]

Ordered list of
opponent’s revealed
cards (number, color,

revealed status).

oc[2] = [5, 'white', True] means
opponent’s third smallest card is

revealed as white 5.

Own Action History hist_self[]
List of past actions taken

by self (card index,
guessed number, result).

hist_self[-1] = [1, 5, True] means last
guess was opponent’s second card

guessed as 5, and was correct.

Opponent Action History hist_opp[]
List of past actions taken
by opponent (card index,
guessed number, result).

hist_opp[-1] = [0, 7, False] means
opponent guessed my first card as 7

and was wrong.

Self Variable State

Game state

dddaa

Remaining Deck Cards deck_remain_set Set of all remaining
cards in the public deck

deck_remain_set = {(0, 'white'), (2,
'black'), (7, 'white')} means these cards

are still in the deck

Current Turn Player turn
Indicates whose turn it is
to act: represented by 0

or 1
turn = 0 means it is my turn to act

Global Variable State
dddaa

Initial State
hc.size() == oc.size() == 4

turn.update()
 deck_remain_set.init()

Tribute 4 cards to 2
players

Each player should be able to choose
white or black

Initial State

Game state

dddaa
Pick new card !deck_remain_set.size()

new_card = randInt(...)
randomly pick new card from deck if exists

Guess opponent card game.check(turn)
game.check(success)

before guessing, confirm state of has_guessed

insert card if guess_success: self.insert() before inserting, must have guess_successed

Actions

Game state

dddaa

update hand card
hc.update()
oc.update()

update one player’s hand card record, for the
one who’s at his turn

update history guess hist.update() update history guess according to current guess
action

update deck data deck_remain_set.update()
turn = 1 - turn

deck data reduces its number of cards if exists

Successor
dddaaall cards revealed all_revealed(hc) || all_revealed(oc) Game ends when one player has all cards

revealed

Goal

Proposed Solution &
Comparative Experiments

Section 3

Naive Solution

turn
Which color to pick if both exists? Random!

Pick new card

Find all possible solution for each unrevealed card
Guess the card with least possible solutions
Consider equal possibility

Guess opponent card

Choose to insert card if exists failure probability
Otherwise guess instead of insert

Insert card

action

hc []

hist_self

deck_remain_set

action

last action action

oc []

Bayes Inference

Multiple false guess by myself: hist_self, produces
high sink costs, therefore should continue guessing
opponent has guessed number around n
opponent has guessed number n From Naive Solution

Normalization by summing
all probabilities

Distinguish optimal solution from
the “same” probability

Consider hidden information instead of
random guess!
Make an optimal decision under the
same prior distribution!

Improve Bayes’ Rule

P(Ci=n | obs): Under current observation,
probability of the number of the
opponent’s i-th card is n
Considering variable: hist, oc, naive

Definition

Adversarial Search

First conquer an inline loop of choosing to guess or insert
Inline loop guessing uses probability from previous bayes inference
(since it’s my card and my view), it’s used in evaluation function.
Probability of successor (p) uses naive solution (directly or with
exponential trend) with guessing finished
In evaluate function, consider number of my revealed cards (risk), the
opponent’s revealed cards, hand size, the Bayesian probability of
guessing opponent cards, opponent owned information and so on.

Expectimax

……

My current/initial GameState

Opponent Successor GameState

val1 val2 val3 val4 val5 …………… valn-1 valn

Guess or Insert

Depth: 3 ~ approximate 8

Opponent Finished GameState
(Value for my turn)

Comparative Experiments

Act like a new player with very good memory, however lacks strategy and gives its winning chance to “god”.

Naive Solution

There exists an RL game agent for this game in open resources, we are going to estimate the performance
through hand testing and bot competing, in order find how they work under different situations.

Compare With RL Method

Bayes Inference
Consider more potential informations including opponent’s guessing information, develop more advanced
strategy and should work better than naive solution. However it only sees the past and ignores future.

Expectimax
Take both naive solution and bayes inference into consideration, and start considering more besides only
guessing number with high correctness. It considers how to win the game from total view, making it acts more
like a skilled player. By adjusting parameters in evaluation, we can simulate different strategies like gambler or
milquetoast.

Expected Outcomes &
Contributions

Section 4

Expected Outcomes

It’s expected that the game agent can appropriately make an optimal solution in a short time (the size of game is very small) of
whether it shoud guess or not, and which number to guess. Higher winning rate also belongs to our expectations. Multiple special
occasions would be simulated in our test to confirm the correctness and effectiveness of the expectimax and bayesian method.

The performance of expectimax and RL are expected to be similar,
since they all consider common strategies we can see. Meanwhile,
there might exists situations where an agent is too clever that it
might loses its game against “stupid” agent, which we would
consider after getting test results.

Outcomes against RL

Contribution

Since this card game is not that popular as other
digital games, there are not many open source
game agent like this hand-made strategy
provided online.

Simple Game Agent
With the help of probabilistic inference and
adversarial search, game agent can act like a
skilled player who consider both “history” and
“future”, which is based on strong theory.

Bayesian & Expectimax

This contribution holds if our method works as
well as or better than RL agent provided online.
We would analysis our method’s advantages and
disadvantages to obtain further conclusions.

Comparison against RL
Evaluation function is a key element in our project.
Through adjusting parameters and values, we
can enable better strategies. Detailed method
would be implemented in the next stage.

Evaluation Function

Potential Improvement

Bar Cards are the last 2 components
of this game, which can be placed

anywhere. This improves
uncertainty for guessing and

entertainment.

Bar Card

Da Vinci Card game should be
able to allow a maximum of 4

players! This requires more
inference under ai agent.

Multiagents

How to purpose different
strategies toward different

opponents according to their
playing histories and

strategy habits?

Deceit or Naive?

THANK YOU

